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1. Introduction

A special case of importance in the display of simultaneous intervals (SCL's or SPL's)
arises when the results of measurement or observations on y at corresponding values of x are
to be displayed with the intent of understanding what they say about (a) the plausibility of the
existence of a smooth dependence on x of the underlying value ave{y I x I (the average that
would have been found were it possible to repeat the measurement y very many times for the
same x), and (b) which smooth dependencies seem to be plausible in view of the data.

The display techniques focusing on matched SCL's and SPL's developed in Technical
Report No. 300 [Tukey 1990] are not particularly useful here. The aperture (pencil-point")
techniques of Hoaglin and Tukey (1985n) suggest very useful approaches, although, as
reported in that reference, these techniques have so far been directed toward the combination of
SCL's and ICL's. The present account builds on all the insights thus developed, seeking for
simplicity and treating related problems as they arise.

2. Intervals and apertures

We assume that our y's come with a useful estimate of their uncertainty, useful in the
sense of providing (approximate, of course) probability statements about ranges of plausible
values for what they measure. Thus we might want to state an ICL (individual confidence
interval) for each point, for example that, we have

95% confidence that 11.2 5 ave(yI xi) < 12.8

How should we display such a statement graphically?

The classical approach is to picture one interval from 11.2 to 12.8 with a line segment or

bar, perhaps decorated with arrowheads, etc. This stresses what we do not know by stressing
the variety of possible values that are plausible. This is perhaps the natural first step beyond

Prepared m crmewon with research at Princetm University spcosored by the Army Research Office
(Durha,), DAAl3.U-K-0045.
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the most naive picture - - in our example a dot at or near the midpoint of the ICL, 12.0. But it

is not a good way to go on to more complex situations.

A better approach for many purposes is to plot what we know rather than what we do not

know - - in our example to draw something from a low value to 11.2 and another something

from 12.8 to a high value; thus "blackening" the implausible values for ave{y I xO} and

showing our range of uncertainty by an aperture - - a "hole in the fence"! A form of this,

using "pencil point" to combine ICL's and SCL's, was proposed by Hoaglin and Tukey

(1985n) We deal here with a similar problem but in a different context. So we are led to

somewhat different graphical display that, however, use the same approach - - apertures.

3. Classes of questions

If we have a set of (x,y) pairs, which might reasonably represent more or less random

fluctuations around a systematic dependence, there is a natural set of pairs of questions that can

be asked about the supposed dependence, each pair of the form:

" Is it reasonable that there is a dependence of a specified class?

" If so, what subclass of dependencies of this class is reasonable?

The classes for which we are most likely to ask these pairs of questions are, in order, from

simple to complicated:

1) constant dependence (avely I x) = CO for all x, and some unknown Co)

2) linear dependence (ave{y I x] = C0 + Clx, for all x, and some unknown Co, C1)

3) some special dependence (according to subject-matter field)

4) monotone dependence (either ave{yI x}1) avefy I x 2) whenever x, 5 x 2, or

avelyI x}1) ave(y I X21 whenever x1 < x2)

5) dependence monotone, except for one maximum or one minimum (sense of

monotonicity changes at that extremum).

It is much easier to continue this list than to deal with the probability problems that (4) or (5)

suggest. So we leave extensions to the reader.

4. The probabilistic situation

An important consideration is the difference between

A) Is this specific dependence of the chosen class plausible?

and

B) Is any dependence of the chosen class plausible?

So far as general situations go, the naive way to answer (B) amounts to asking (A), in parallel,

for each possible specific dependence of the class, and announcing whether any of them is

June 13, 1990
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plausible. Quite naive, but not best.

In the simplest case, where we ask if avefy I x) might be the same for all x, if we

represent each measurement or observation by an aperture, Technical Report No. 300 (Tukey
1990), made a clear distinction between (tight or severe) SCL's and SPL's. Here SCL's are
simultaneous confidence limits, which, in our present style, would surround each data point
with an aperture - - an SCA - - such that a value of C is compatible with that measurement if

the horizontal line at height C passes through the aperture. SPL's, on the other hand, are
simultaneous partial limits which, in our present style would correspond to narrower apertures -
- SPA's - - such that two y's might have the same underlying value if there is some horizontal

line that passes through both apertures.

For horizontal lines, the best answer - - or class of answers - - to (B) is thus provided by

tight simultaneous partial apertures (SPA's), just as the best answer - - or class of answers - -

to (A) for horizontal lines is provided by tight simultaneous confidence apertures (SCA's).

* slanting lines *

Consider next the case of slanting lines, where

ave{y I x) = CO + CI(x-xoo)

If we knew the slope, C1, we could replace y by y - CI(x-xo0 ), reducing the problem to the

case of horizontal lines, just discussed. Thus the answers to

A) Is this specific straight-line dependence (with slope c ) plausible?

and

B) Is any straight line dependence (with slope c 1) plausible?

are best given, by passage or non-passage of a line of the given slope, respectively, through
(A) simultaneous confidence apertures or (B) simultaneous partial apertures.

If, as is usually the case, we do not know the slope, we cannot confine our attention to

any one slope. Thus the chance that a line will pass all simultaneous partial apertures, when
all the values of (x, ave{y I x ]) lie on some unknown line, will be larger than SPL nominal.
This will happen because (a) the chance that a line of correct slope will pass equals the

nominal and (b) it is possible that, while no line of correct slope passes, one of incorrect slope

does pass.

Since Q follows P in the alphabet, let us define tight SQL's and SQA's to be the
limits or apertures such that the chance, in the null situation, of a line passing all of them is the
nominal level. Then

coefficient of tight SQL < coefficient of tight SPL

June 13, 1990



-4-

and

(tight) SQ-apertures are only part of (tight) SP-apertures

For general k - - and for general patterns for the k x's - - there seems to be no available

tabulation (or useful closed form expression) for the tight SQL coefficients. (If we had

answers for k equally spaced x 's, however, we would probably be in relatively good shape.)

For k=3 and equally spaced x 's, however, it is easy to calculate the SQL coefficients. If we

do this (see Section 10) and go on to ask what approximation is suggested for more general k,

we are led to believe that

tight SPL coefficient - .68 (severe SCL _oefficient - severe SPL coefficient)

is probably not a bad approximation to

tight SQL coefficient.

(See Section 11 for a different approximation.

We return below, in Section 12, to the question of severe SQL coefficients, which seem

to have quite limited utility.

5. Display choices

In Technical Report 300, we argued the advantages of a horizontal bar in displaying SP
intervals and a point in displaying SC intervals. This led to a double open triangle arrowhead

style of display. If we convert this directly from intervals to apertures, we move from the style
of the left-hand side of exhibit 1 to the style of that exhibit's center. The results are relatively

effective so long as only horizontal lines are candidates to pass through the apertures. (Since

this is the case where SP apertures are appropriate, this is not a serious restriction.)

exhibit 1

about here

When we want to go to SQ apetures, plausibly by adding to what is already displayed,

we want:

" a pointed glyph, since lines need avoid the aperure only at its own value of x,

" a reasonably emphatic glyph,

" a glyph that directs our attention inward.

June 13, 1990
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exhibit 1

Evolution of intervals to apertures

SC and SP
intervals

SC, SP and SQ
SC and SP apertures
apertures
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The style of the right-hand side of exhibit I meets all three of these desiderata, while

preserving the double open triangles we chose earlier for SC and SP.

In the half-open quadrilaterals (hoquas) of the new style:

" the black tip marks the end of the SQA

" the black-white division marks the end of the SPA

" the white tip marks the end of the SCA.

We sball use this style until a better one is found, using our roughly approximate SQA's until

better coefficients are availablz. When, as, and if, such coefficients are available for slanting

lines we expect to use them instead. When the class of candidates is broader than all straight

lines, we wil want to use even narrower apertures. The time when we w-ill have

corresponding coefficients for each of several classes of coefficients seems uncertain. The best

temporary solution seems to be to use the best available SQ coefficients, and to continue to

carry along a substantial grain of salt.

6. The Saskatchewan data

Brillinger (1990) has recently illustrated a moderately complicated analysis of

geographically aggregated data, using 1986 births in the 18 Census divisions of Saskatchewan,

as an example. We will use the same data as an example of a simpler analysis using SQ

apertures.

* the data *

The basic population counts, by division, for the division as a whole, and for the 3

largest places in the division (of size 1,000 or more) is set out in exhibit 2. The last two

columns show the ratios of (a) population of largest place and (b) sum of populations of 3

largest places to the total population. We will return to these and related figures shortly.

exhibit 2

about here

The minimum instability we can plausibly apply to a number of births - - unless we take

a narrowly historical view - - is that of the Poisson distribution. To more accuracy than we

are likely to need in the present example, a Poisson distribution corresponds to

score = 42 + 4(count)

following a Gaussian distribution with unit variance.

Thus*, given a coefficient h for some form of simultaneous aperture, we can locate the

ends of the aperture by applying the inverse transformation

June 13, 1990
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exhibit 2

Populations in the 18 census divisions
(3K57 means "3 thousand, 570", etc.)

Division Largest Next Third Total L/T 3/T

1 9K17 Estevan 1K19 Oxbow IK07 Carlyle 32,771 .28 .28

2 9K52 Weyburn IK01 Radville ? 26,677 .36 .43

3 2K92 Assiniboine 1K34 Gravelbourg 1K03 Coronach 26,367 .14 .26

4 2K47 Maple Creek 2K11 Shaunavon ? 14,659 .17 .37

5 5K09 Melville 3K06 Esterhazy 2K58 Moosomin 41,202 .12 .26

6 162K61 Regina 1K89 Indian Head IK83 Fort Qu'Appelle 201,021 .81 .83

7 33K94 Moosejaw IK02 Herbert ? 52,'75 .64 .68

8 14K75 Swift Current IK41 Eston 1 K ILeader 35,146 .42 .49

9 15K15 Yorkton 2K69 Kamsack 2K67 Canora 44,918 .34 .46

10 2K15 Wynyard 1K49 Wadena 1K45 Foam Lake 25,121 .09 .20

11 15412 Saskatoon 2K08 Warman 1K97 Outlook 192,551 .80 .82

12 3K56 Batleford 2K66 Rosetown 21(56 Biggar 25,493 .14 .34

13 3K97 Kindersley 2K41 Unity 1K50 Wilkie 27,375 .14 .28

14 6K01 Melfort aK18 Nipawin 3K1 Tisdale 47,467 .13 .28

15 31K38 Prince Albert 4K7 Humboldt IK61 Rosthern 79,980 .39 .47

16 14K03 N. Battleford 1K23 Shellbrook ? 39,905 .35 .40

17 6K03 Lloyd Minster 3K86 Meadow Lake 1K00 Maidstone 35,481 .17 .31

18 1K64 Creighton ? 25,304 .06 .14

L/T = ratio of largest to total

3/T = ratio of sum of three largest with (?) filled in as 0K90 = 900)
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corresponding count = ((score)2 -2)/4

to the ends of the aperture

observed score ±h

in terms of the score. To get ends of an aperture for birth rate we need to divide the

corresponding counts by the number of women of appropriate age (Brillinger used the 25-29

age group).

Turning back to Technical Report 300, with k =18 and v=- (under the Poisson

assumption, the variance is known!), we find coefficients of ±2.98 for severe SC, ±2.53 for

severe SP and ±2.46 for tight SP. Our working approximation now gives ±2.16 for SQ.

Accordingly, exhibit 3 gives numbers of women and births (both of which have been modified,

see Brillinger 1990 for details, for privacy reasons) overall birth rates, and the 3 sets of birth

rate intervals.

exhibit 3

about here

* urbanicity vs. rurality *

As Brillinger noted, birth rates tended to be low in more urban divisions, high in more

rural ones. If we are to picture what we know with a well-placed set of apertures, we need an

x-variable that reflects rurality vs. urbanness. Kafadar and Tukey (1991, and papers in

preparation) have faced this question with regard to county-by-county death rates from various

forms of cancer. Their conclusions include:

9 steps of 1/2 in the logarithm to the base 2 of the size of the largest place in the count),

seems to do quite well (Kafadar and Tukey 1991);

e especially in certain suburban areas, we do well to allow the sizes of the 2nd and 3rd

largest places to influence the classification;

* working with the square-rmot of the sums of squares of the 3 largest places seems one

reasonable approach.

Thus it seemed plausible to approach the Saskatchewan data in a somewhat similar way.

* Zipfing the tail *

The most easily available place-by-place population data is very likely to cut off at some

size (perhaps 2,500 or 1,000). In Saskatchewan, even with a cut off at 1,000, this left Census

divisions with less than 3 places of recorded population. Thus it was natural to ask whether

there was any easy way to approximate the missing populations.

June 13, 1990
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exhibit 3

Observed birth rates and intervals based
on ±2.98, ±2.46, and ±2.14 applied to (2 + 4(birfhs))" 2

(irrelevant decimal places given)

Division birth rate 12.98 ±2.46 ±2.14*

1 .169 .1359 .2034 .1412 .1970 .1446 .1933
2 .137 .1012 .1714 .1086 .1646 .1100 .1604
3 .142 .1082 .1924 .1146 .1841 .1186 .1791
4 .155 .1146 .2171 .1203 .2089 .1271 .2007
5 .164 .1320 .1996 .1374 .1931 .1407 .1892

6 .133 .1226 .1440 .1244 .1420 .1255 .1409
7 .139 .1149 .1614 .1187 .1570 .1210 .1544
8 .155 .1274 .1909 .1324 .1819 .1356 .1812
9 .158 .1262 .1908 .1313 .1846 .1345 .1809

10 .143 .1082 .1924 .1146 .1841 .1186 .1791

11 .131 .1214 .1413 .1231 .1395 .1241 .1389
12 .185 .1436 .2215 .1500 .2167 .1539 .2120
13 .167 .1334 .2037 .1389 .1970 .1424 .1929
14 .162 .1335 .1951 .1384 .1893 .1415 .1857

15 .148 .1270 .1673 .1303 .1636 .1324 .1613
16 .137 .1112 .1684 .1440 .2047 .1634 .2416
17 .171 .1440 .2047 .1489 .1990 .1519 .1955
18 .201 .1634 .2426 .1697 .2351 .1736 .3305

*This value lies between the approximations of Sections 4 and 10 (±2.16) and Section 11 (±2.11)
for the tight SQL coefficienL Using either ±2.11 or L2.16 instead of ±2.14 would make a small
change in this table and no visible change in the pictures derived from it (for example, ±2.16 is
only 1/16 of the way from 2.14 to 2,46!).
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Many extreme J-shaped distributions, like those of populations of places in some local

area, show behavior analogous to the rank-size rule of (Zipf's Law) according to which

(size)(rank from above) constant

so that

size of gh largest place~ onstant

(Systematic deviations, especially for small g or large g, are probably more common than

close agreement. For some instaxces, see Tukey 1977, Chapter 18.)

This approximation corresponds to simple ratios for tle sum of squares of sizes of all

places smaller than a given place as a multiple of the squared size of that place and its rank g.

Exhibit 4 shows the the results for small g.

exhibit 4

about here

In using this approximation, we need to take account of any cut-off on the list. Some

examples from exhibit 2 will illustrate the opportunities. Division 2's second-sized place is

close to 1,000, so that we can enter exhibit 4 with g = 2 to get an approximate sum of squares

of sizes of all places from the third largest onward. Division 4 has a second-sized place above

2,000 and we know the third-sized must be below 1,000. Therefore we do better to choose a

third-sized size and then turn to exhibit 4 with g=3. The largest choice for the 3d -sized place

is just below 1,000. We have chosen 1,000 in such cases, preferring to overestimate the

remaining sum of squares somewhat.

Exhibit 5 shows, for each of the 18 divisions, the square roots of the sums of squares of

sizes

* for the largest place

" for up to 3 places of size 1,000

" for all places, approximated as just described.

It also shows these sizes (found as square roots) as fractions of the total population.

exhibit 5

about here

One important aspect of this table is the similarity of the orderings provided by most

columns both with each other and with those based on the last two columns of exhibit 2.

June 13, 1990
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exhibit 4

Approximate ratios of sum of squares of sizes

of all smaller places to the square of the size of the
98 * largest place (based on rank-size rule)

g ratio

1 .645
2 1.58
3 2.56

4 3.54
5 4.54

6 5.53

7 6.53
8 7.52
9 8.52
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exhibit 5

Equivalent sizes of largest place for the 18 divisions
(201K0 is 2 01,Oxy, etc., and irrelevant decimal places are carried to show similarity of ratios)

Division Total Largest (*) (**) L/T (*)/T (**)IT 16-21og 2(**)

6 201K0 162K61 162K64 164K66 .809 .809 .809 1.31
11 192K6 154K21 154K28 154K31 .801 .801 .801 1.46
7 52K87 33K94 33K96 33K98 .642 .642 .643 5.83

15 79K98 31138 31K79 31K85 .392 .397 .398 6.01

9 44K92 15K34 15K45 16K2 .342 .353 .357 8.00
8 35K15 74K75 14K85 14K94 .420 .423 .425 8.20

16 39K90 14K03 14K08 14K17 .352 .353 .355 8.35
2 26K67 9K52 9K57 9K66 .357 .359 .362 9.46
1 32K77 9K17 9(37 9K57 .280 .286 .292 9.48

17 35K48 6K03 7K23 7K40 .170 .204 .209 10.22
14 47K47 6K01 8K54 8K84 .127 .180 .187 9.79
5 41K20 5K09 6K89 7K35 .124 .167 .178 10.24

13 27K37 3K97 4K87 5K33 .145 .178 .194 11.17
12 25K49 3K56 5K13 5K55 .140 .202 .210 11.05

3 20K36 2K92 3K46 3K83 .143 .170 .188 12.17
4 14K65 2K47 3K40 3K76 .168 .232 .256 12.16

10 25K12 2K15 2K99 3(67 .086 .119 .146 12.24
18 25K30 1K64 1K64 2K29 .065 .065 .091 13.61

(*) Square root of total squared population of 3 largest places (of size > 1000) in the division.

(**) Square root of approximate total squared population of all places in the division.

(***) Here (**) is expressed in thousands.

Notice that how far we go summing squares matters very little in the top half of this table.

Notice that ordering on "Largest" has produced a close approximation to order in each of the
six columns to the right.

Notice that the difference between (*)/T and (**)/T never exceeds .027 and that
the difference between 16-2og2(*) and 16-21og 2(**) does not exceed 0.48,
and for all but the four smallest divisions does not exceed 0.26.
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Presumably each of these columns does a moderately reasonable job of displaying rurality-

urbanicity. We shall build our analysis here on the last column of exhibit 5, but we encourage

readers both to look at other choices and to cross-plot some of these columns against one

another.

re-expression *

If we plot birth rate as a response, and 16-2 log2((**)/1000) as a circumstance, we get

exhibit 6. Trend is clear, as is appreciable curvature.

exhibit 6

about here

A little trial urges us to use (16-2 log2((**)/1000))2 as the circumstance, and leads to

exhibit 7, in which 5 divisions deviate to one side, while the other 13 lie reasonably well along

a straight line.

exhibit 7

about here

7. Apertures in the example

If we now use the style suggested in Section 5 to display birth rate against

(16 -2 log 2((**)/10OO)) 2 we get the picture in exhibit 8. Clearly a reasonable variety of

straight lines pass all apertures. At whatever approximation to 5% our approximate SQA's

provide, then, the data are individually-but-collectively consistent with a linear relation of

divisional birth rate to a simple measure of rurality.

exhibit 8

about here

It is clear that, as we would have anticipated, not all apertures contribute to restricting the

set of piercing straight lines. It thus seems natural to produce a skeleton version of exhibit 8
which shows only the aperture edges that provide additional restriction, beyond that provided

by others. Exhibit 9 provides this skeleton version, and includes the bounding positions of the
lines that pierce all apertures (solid lines) whose non-emptiness indicates that we are unlikely

to need any more complicated analysis. The dashed line is an eye-fitted line near the center of

the bundle of piercing lines. Finally, the dotted lines, joining SCL corners of the split-diamond

glyphs, indicates the range of possibilities for a true line (assuming that there is one).

June 13, 1990



- 8a -

exhibit 6

Birthrate against log size, where size (= (**) from exhibit 5) approximates
the square root of the sum of the sizes of all places in a division

birthrate
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exhibit 7

As exhibit 6, but with squared horizontal scale

birthrate

o 0
0

00

0

00
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op I
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rural 16-21og 2 size, where size - root sum of squared populations -4 urban
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exhibit 9

about here

S. Further analysis

We can look harder at the data, in an overall, poorly informative way by summing the

standardized squared deviations of the observed birth rates from some fitted lines (standardized

to allow for the standard deviations that are consequences of assumed Poisson distribution).

Doing this roughly, gives a sum of squares of 21.8, which is to be referred to 18 - 2 = 16 or

18 - 3 = 15 degrees of freedom. A reasonable threshold for choosing further analysis would

probably be a ratio of 2 between sum of squares and degrees of freedom, which is clearly not

even approached. Since exhibit 8 offers no specific indications suggesting further analysis, we

are probably well advised to stop with our apparent linear dependence of birth rate on a simple

measure of rurality.

It might be of interest to use actual populations of places under 1,000 and see what effect
this would have on the analysis.

9. Kinds of consistency

We have now looked at the Saskatchewan data (birthrate vs. rural urban index) in two

quite different ways - - both oriented toward: How well does the data fit a simple relation?

Do we seem to need to look further? It is probably time that we compared these approaches in

rather greater generality?

We could characterize the two approaches as one of small-group responsibility and

another of collective violence. If a set of SQL-based apertures cannot be passed, there is at
least one subset of 3 apertures that cannot be passed. Thus our feeling of inadequate fit can be

assigned to one or more subsets of 3. (This is assigning responsibility to the smallest possible

subset, since any pair of apertures (for different x -values) can be passed by each of many

lines.)

To look at a sum of squared deviations, by contrast, is to blend all deviations into an

unresolved whole. A positive result is a collective result! If we find a poor fit, but we are not

allowed to look inside our omnibus statistic, we have no idea what it is that is mediating the

poor fit. All we know is that, collectively, the deviations are too large - - that there is too

much collective violence to the deviations.

Some will say that we should make our choice between two such approaches on the basis

of power, but there are varied reasons why merely calling on the power concc, i not

work.

June 13, 1990
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exhibit 9

Skeleton aperture plot for the Saskatchewan data
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First, we are in a multiresponse situation, and relatively high power in one direction is

likely to correspond to relatively low power in another. We are forced to think about, for

example, the least power for points on a hypersurface that encloses the null situation. Which

hypersurface?

The situation is probably clearest when we are comparing several y 's, with ri = aveyi,

and no other quantities enter. If one looks at the hypersurface

1(0h -) 2 = constant, the minimum power on that hypersurface is maximized by using the

collective violence statistic, , (y, _y)2. If, on the other hand, one looks at the hypersurface

range {r1 ) = constant, the minimum power on this hypersurface is maximized by the

2-value-responsibility statistic, range {yj). It is not enough to ask for "power", we must say

where we want the power.

Second, the pur. concept of power is inadequate to deal with collective violence. The

idea of power grew up in the univariate situation - - usually a single comparison - - where the
value was either "up so-and-so" or "down such-and-such", and where the sign of Student's t

distinguished "up" from "down". I, long ago, introduced the notion of "useful power" as the

product of mathematical (pure) power and the chance that if a definite answer were given, we

would know what it meant. A moment's reflection shows that the useful power of any

collective violence statistic is either zero, or very nearly zero. This is certainly the case for
statistics based on ,( _y-)2. If we accept "useful power" as a reasonable concept - - a

reasonable criterion - - then we will have to eschew collective violence statistics, and will

probably find ourselves working with small-subset-responsibility statistics.

This is as true for "ave{y I x} may be linearly dependent on x' as it is for

"the Tri = ave{y, } may be all equal" or as it is for situations much more complex than either

of these.

10. The case k=3

If k=3, and the values of x are equally spaced, we can write the values of y as

y_ =I_+uo/43-u/ 4 2 - u 2 / 4 6

yo- go+ Uo/ - 2U2 /6

y+=p.++Uo/I'+u 1 F2 + u2 / f

with the null hypothesis represented by U0 , u1 , u2 all uncorrelated Gaussians of equal variance,

which we may as well take to be unit variance. The deviations of the y's from a straight line

June 13, 1990



are specified by the terms in u2. A line will just sneak through apertures of ±u 2s v (where

ave{s = 1) based on these y 's when I (u2146) - (-2u2/N 6)1 > ±(a-(-a))s,. The boundary

case is

3u2  1
2a= -

a 2 - (U2)
2F sv

Since U2/SV is distributed like Student's t on v degrees of freedom, we get

3
a --L . tv[2.5%] = .6124 tv [2.5%]

with the result

v/k 1 1.2 1.5 2 3 6 0c

SQL coefficient 1.948 (1.80) (1.65) 1.498 1.385 1.287 1.200

Going to the tables in Technical Report 300, we see that

v/k 1 1.5 2 3 6 0*

tight SPL coeff- SQL coeff (1.01) - .67 .58 .51 .46

severe SCL - SPL 1.43 - .97 .86 .75 .70

.68(severe SCL - severe SPL) .98 - .66 .58 .51 .48

tight SPL 2.96 - 2.17 1.97 1.80 1.66

diff of last two 1.98 - 1.51 1.39 1.29 1.18

tight SQL coeff (see above) 1.95 - 1.50 1.38 1.29 1.20

(The parenthetic values are both boldly extrapolated, so their disagreement can be neglected.)

As the last two lines show

tight SQL - tight SPL coeff-.68(severe SCL - severe SPL)

June 13, 1990
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is a very good approximation. This relation has been developed for a very special case (k=3)

of "tight" coefficients; brave people may wish to try it for general cases of tight coefficients.

11. An alternative approach

Another way to approximate SQL is to ask for what Q-value (left-hand area) would SPL

equal the SQL for our standard tail area (Q = .95). A little inquiry into Harter - - leads to the

following results

v /k 1 2 3 6 00

Q° 86.3% 84.4% 82.6% 80.7% 79.5%

which is interesting, but not nearly as a simple approximation.

For the Saskatchewan example (v = o, k=18) the use of 79.3% would lead to an SQL of

4.22/2 = 2.11, not too far from the 2.16 found by the other extrapolation.

12. Appendix on severe SQL's

We now turn to the "severe" or "Bonferroni" approach. If we consider our "does a line

pass through" problem carefully, we see that some line will pass all apertures if some line

passes each set of 3 apertures. (We can see this inductively by starting with 3 apertures with

smallest x's, and adding apertures one at a time from left to right. If there is difficulty at any

step, the closest that a line passing all the previous apertures can come to passing the aperture

being added will be determined by a line that contacts the edges of two of the previous

apertures. Thus those two apertures, and the new aperture, make up a set of 3 that cannot be

passed.)

For (x,,y,), (xb,Yb) and (x ,y,) with x, < xb <5 x the test statistic for passing is

(X, -Xb )Y, + (Xb -xy YYb " XC - X

whose variance is

2 Xb -- To2
Xe -X.

There are

k(3) = k(k-IXk-2)/6

such triples, each of which can be too positive or too negative. Thus Bonferroni operates with

k(k-l(k-2)/3 ends, and a 5%/(k(k-1)(k-2)/3) = 15%/k(k-1)(k-2) tail area for each.
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The values of R = 1.5 +.5t2 range from 3/2 to 2, where t varies from 0 to 1 and is likely

to be somewhere near uniformly distributed. An approximate Bonferroni would use an

averaged t2. If we put 1/3 for our averaged t 2 , R = (3/2) + (1/2)(1/3) = 5/3 = 1.66. (Some

more detailed calculations suggest 1.64 may be a more precise value, but the difference is

unimportant here.)

Thus an approximate Bonferroni calculation, usually slightly conservative because of the

actual distribution of t and because of the nature of the averaging involved finds

severe SQL's at tv[15%/k(k-1)(k-2)] (,1TiTsv)

Values thus obtained are given in exhibit 10. Notice that most entries have

severe SQL coefficient > severe SPL coefficient

although we know that

tight SQL coefficient < tight SPL coefficient.

exhibit 10

about here

The only reasonable conclusion is that trying to control the average number of triples

which cannot be passed is too far away from controlling whether one or more triples cannot be

passed for "severe" to be a reasonable choice.

This does not seem so surprising when we realize that, for k=18 (as in the Saskatchewan

example) there are 18(17)16/6 = 816 triples generated by 18 apertures. Correlations of

behavior of one triple with that of another must be substantial, and "failure to pass" must tend

to occur, even in the null situation, for 2 or more triples at a time.

Thus we need to use tight SPL's or some close approximation thereto.
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exhibit 10

Severe SQL coefficients
(calculated as tv [15% /k (k-lXk-2)] (1.-66) see ** below)

k v/k =1 v/k =2 v/k =3 v/k =6 v/k

3 2.050 1.576 1.457 1.307 1.262
4 2.780 2.065 1.890 1.740 1.609
5 3.074 2.307 2.116 1.952 1.808

6 3.190 2.452 2.261 2.094 1.947
8 3.297* 2.621 2.442 2.282 2.140

10 3.329* 2.721* 2.556* 2.408* 2.214

12 3.339* 2.790 2.639* 2.501* 2.375
15 3.343* 2.866 2.731* 2.606* 2.492*
18 3.345* 2.923 2.801* 2.688* 2.582*

20 3.347* 2.954* 2.840* 2.733* 2.02*
25 3.355* 3.019* 2.919* 2.825* 2.735*

30 3.366* 3.079* 2.982* 2.897* 2.816*

40 3.392* 3.152* 3.078* 3.007* 2.939*
50 3.419* 3.215* 3.151* 3.090* 3.303*
60 3.445# 3.266* 3.210* 3.156* 3.103*

*Larger than severe 95% SPL (!)

**Calculated using 41.66 factor - - maybe 1% too large
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